Kernel density estimation with Berkson error

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density estimation with heteroscedastic error

It is common, in deconvolution problems, to assume that the measurement errors are identically distributed. In many real life applications however, this condition is not satisfied and the deconvolution estimators developed for homoscedastic errors become inconsistent. In this paper, we introduce a kernel estimator of a density in the case of heteroscedastic contamination. We establish consisten...

متن کامل

Kernel Density Estimation

Preface The following diploma thesis is thought to be a diploma thesis in applied statistics. I declare this in the first paragraph of my work, because you can treat this subject either from a theoretic or an applied view, although the borders between these two areas of statistics cannot be drawn exactly. The reason why I got the idea to treat this subject, is that on the one hand density estim...

متن کامل

Filtered Kernel Density Estimation

A modification of the kernel estimator for density estimation is proposed which allows the incorporation of local information about the smoothness of the density. The estimator uses a small set of bandwidths rather than a single global one as in the standard kernel estimator. It uses a set of filtering functions which determine the extent of influence of the individual bandwidths. Various versi...

متن کامل

Error estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space

In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.

متن کامل

Contingent Kernel Density Estimation

Kernel density estimation is a widely used method for estimating a distribution based on a sample of points drawn from that distribution. Generally, in practice some form of error contaminates the sample of observed points. Such error can be the result of imprecise measurements or observation bias. Often this error is negligible and may be disregarded in analysis. In cases where the error is no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Journal of Statistics

سال: 2016

ISSN: 0319-5724

DOI: 10.1002/cjs.11281